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Abstract—Data-driven methods have been very attractive for fusion of both multiset and multimodal data, in particular
using matrix factorizations based on independent component analysis (ICA) and its extension to multiple datasets,
independent vector analysis (IVA). This is primarily due to the fact that independence enables (essentially) unique
decompositions under very general conditions and for a large class of signals, and independent components lend
themselves to easier interpretation. In this paper, we first present a framework that provides a common umbrella
to previously introduced fusion methods based on ICA and IVA, and allows us to clearly demonstrate the tradeoffs
involved in the design of these approaches. This then motivates the introduction of a new approach for fusion, that
of disjoint subspaces (DS). We demonstrate the desired performance of DS using ICA through simulations as well
as application to real data, for fusion of multi-modal medical imaging data—functional magnetic resonance imaging
(fMRI),and electroencephalography (EEG) data collected from a group of healthy controls and patients with schizophrenia
performing an auditory oddball task.

Index Terms—Data fusion, independent component analysis, fMRI, EEG, multimodality.

I. INTRODUCTION

Information about a phenomenon or a system of interest can be
obtained through various types of instruments, experimental setups,
and sources. We refer to a related set of measurements as a dataset,
and our focus in this paper is the fusion of multiple datasets, i.e,,
extraction of multivariate interpretable features from multiple related
datasets that can be used for classification, prediction, detection, and
change analysis, among other tasks.

Since typically very little is known about the interaction of multiple
datasets, data-driven methods based on matrix decompositions have
been the natural solution. Among those, ICA has proven especially
attractive and is our focus in this short overview along with its
generalization to multiple datasets, IVA. We first introduce a general
umbrella that includes previously introduced methods for data fusion
based on ICA and IVA, and allows us to classify those based on
two key properties, level of dataset interaction and implementation
flexibility. We then use this general umbrella to introduce an effective
new approach, disjoint subspaces (DS) that addresses limitations of
previous methods, and present comparison studies to highlight the
desirable properties of the new approach along with the tradeoffs
across these methods.

In the next section, we formalize our definition of fusion by
first making an important distinction among multiple datasets, those
that are multiset and multimodal, and then formally introduce the
key concepts of interpretability, uniqueness and diversity. Then in
Section III, we introduce our general framework for data fusion and
describe how previous methods fall under this umbrella, discuss their
properties and introduce the DS approach.

Corresponding author: T. Adali (e-mail: adali@umbc.edu).

This work was supported by the NSF under Grants No. NSF-CCF 1618551 and
NSF-NCS 1631838.
Digital Object Identifier 10.1109/LSENS.2018.2884775

II. PRELIMINARIES

In this section, we present key definitions that provide the necessary
background and form the basis of the general fusion framework we
later introduce.

Multiset data refers to multiple sets of data that are all collected
using the same modality at different conditions, observation times,
using multiple experiments, tasks, or subjects. Hence such datasets
are all of the same type, resolution, and dimension. Examples
include a single modality data such as fMRI data collected from
different subjects or at different time points, or multispectral images
from different color channels. On the other hand, multimodal data,
refers to information collected about the same phenomenon using
different types of modalities or sensors, where the modalities provide
complementary information. Examples include medical imaging data
such as EEG and fMRI data that both measure the brain function,
EEG by recording electrical activity through electrodes placed on
the scalp and fMRI by imaging the brain hemodynamic response.

We define data fusion as the analysis of multimodal or multiset
data where all datasets are allowed to fully interact and inform each
other. Hence, we distinguish fusion from an integration type approach
where there are separate processing chains for each dataset, and at
the end, they are brought together so that one informs the other,
which is also referred to as late fusion. In our case, we emphasize
the fact that the datasets are formed such that the variability in the
data is maximally preserved.

We form the datasets by stacking N , each Vk dimensional measure-
ments or multivariate features vertically to yield Xk ∈ R

N×Vk , k, . . .K .
For the multiset scenario, we have Vk = V for all k, while for the
multimodal one, this is not typically the case. However, in both
cases we assume that there is a common dimension across which
the datasets can be linked. Then the main assumption is that the
datasets are generated as mixture of N components—referred to as
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Fig. 1. Associations for fusion of two types of data

sources in blind source separation—given by the rows of matrix Sk

and linearly mixed through Ak

Xk = AkSk for k = 1, . . . ,K . (1)

We refer to the columns of matrix A as profiles as they quantify
the contributions to the overall mixture, Xk . The goal is, given
Xk , to identify these two factors—matrices—and to interpret them,
i.e., to attach a physical meaning to them. A simple example is in
spatial fMRI analysis where the components correspond to functional
networks and the corresponding column of the mixing matrix to their
temporal modulation, which also provides a good model match and
hence produced results that have been especially useful [1].

An important consequence of the requirement on interpretability
is that we require the decomposition to be essentially unique by
which we mean that the two matrices in the decomposition are
unique up to a common permutation and scaling/counter-scaling of
the columns. It is easy to see that, in general, matrix decompositions
are highly nonunique, and with only additional assumptions such
as sparsity nonnegativity, and orthogonality, one can guarantee
(essential) uniqueness. We define any property or constraint that
enables a unique decomposition as diversity. A very useful type of
diversity is independence as it enables unique solutions for a very
general class of signals including multiple Gaussians [2]. Given the
linear generative model in (1), ICA (K = 1) recovers the sources by
estimating the demixing matrix W such that we have U =WX where
U includes the source estimates. A direct measure of independence is
mutual information rate, which enables one to account for multiple
statistical properties of the sources simultaneously, such as non-
Gaussianity, non-whiteness (sample dependence), non-stationarity,
and non-circularity [2].

III. A GENERAL FRAMEWORK FOR DATA FUSION
USING ICA AND IVA, AND A NEW METHOD

Given multiple datasets with the linear generative model in (1),
we perform data fusion using matrix decomposition by establishing
associations across the datasets in two ways, either through the
components and/or the profiles as shown in Figure 1. We refer
to these associations as links across the datasets, which can either
be hard where we assume that a given set of components and/or
profiles are common—i.e., exactly shared—across the datasets, or
soft which implies that the association is statistical, i.e., that the
components/profiles are statistically dependent. As shown in Fig. 1(a),
for multiset data, we have the option of establishing links both through
the components and the profiles. However, in the case of multimodal
data, since the components are of different nature, we can neither
assume that they can be exactly shared nor are dependent across the
datasets. Thus, the only possibility is linking them through profiles
as in Fig. 1(b), covariations across, e.g., subjects or samples.

A. ICA and IVA for Data Fusion

We can study most ICA/IVA based fusion methods under the
general umbrella in Fig. 1. For multiset data, the most widely used
solutions are Group ICA [1] and, more recently, IVA [2],[3]. Given K
datasets, Group ICA vertically concatenates the datasets and performs
dimension reduction using PCA. Then, a single ICA is performed on
this group subspace, hence providing a hard link of common group
subspace across the datasets. Individual dataset estimates are then
back-reconstructed. IVA, on the other hand, identifies components that
are maximally independent within each dataset but are dependent
across the datasets. This is achieved through the definition of a
source component vector (SCV) of dimensionality K obtained by
concatenating corresponding sources from each dataset. The soft link
across the datasets is then established by using a suitable multivariate
probability density function (pdf) for the SCV. IVA is then achieved,
by minimizing mutual information rate like ICA, but among the
SCVs rather than individual sources. The IVA formulation reduces
to ICA for a single dataset.

For multimodal data, joint ICA (jICA) [4] concatenates multiple
datasets horizontally, and performs a single ICA, assuming that the
mixing matrix, i.e., all profiles are shared across all K datasets, thus
establishing hard links across the datasets. Parallel ICA(pICA) [5],
on the other hand, relaxes the common mixing matrix assumption by
jointly performing two separate ICAs while maximizing correlation
of fixed number of selected profiles at each iteration through an
augmented cost that takes both independence and profile correlation
into account. The resulting components are not as independent as in
a single dataset ICA decomposition and level of correlation and the
number of profiles are parameters that need to be determined.

A more direct approach to transition from hard links to soft
links is by simply transposing the model in (1) and using the
transposed IVA model (tIVA) [6]. While it appears to be the most
natural way to link multimodal data, a main disadvantage is that
the number of observations now become observation samples and
hence to be able to reliably compute higher-order statistics, one
needs a significant number of samples. A new data fusion method,
consecutive independence and correlation transform (C-ICT) [7],
introduced for two datasets like pICA, alleviates the main limitations
of jICA and pICA. It is a two step hybrid model based on ICA and
CCA to factor and fuse multimodal data. In the initial step, C-ICT
performs individual ICAs on each dataset separately thus yielding
maximally independent component estimates Uk for each modality
and corresponding Âk for k = 1, 2. In the second step, the two sets of
results are linked by using CCA by maximizing correlation between
the columns of the two estimated Âk matrices. The use of CCA
after a separate ICA decomposition, allows extraction of a different
number of components for each modality and use of different ICA
algorithms for each dataset.

There are constraints imposed by each method and the algorithm
employed for the decomposition, discussed in detail in [6] for jICA,
IVA, and tIVA. Here we introduce two key tradeoffs for fusion,
flexibility in terms of choice of different algorithms and order as
well as the level of interaction among the datasets. The first one,
flexibility in implementation allows one to pick the most appropriate
algorithm for each dataset, and to select the best order for the
decomposition. The selection of order refers to identification of the
signal subspace size, which is assumed to be less than the number of
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observations and plays a very important role in final performance [2].
Level of interaction among the datasets is another important factor
determining how strongly they influence and inform each other.

Hard links usually enable stronger interaction across the datasets,
and approaches in order of decreasing level of interaction are jICA,
Group ICA, IVA, tIVA, pICA, and C-ICT. As associations in the
component dimension is expected to be stronger, both because of
the availability of higher number of samples and richness of the
distribution in that dimension, IVA provides stronger links than tIVA.
On the other hand, in terms of implementation flexibility C-ICT is
the most flexible one, allowing choice of different algorithms and
orders, followed by pICA which allows for flexibility in the choice
of order, and then IVA, Group ICA, tIVA (all three offering the same
level of flexibility), and finally jICA. These tradeoffs motivate the
introduction of a new method, which we discuss next. Obviously all
methods introduced for multimodal data can be used for multiset
fusion as well, and this is also the case for DS, but here, we emphasize
its use in multimodal fusion as that is the focus of the special issue.

B. Disjoint Subspaces (DS) for Fusion

The main idea for DS is to identify and split the common and
distinct subspaces from the modalities and perform separate analyses.
We determine the subspace common to both datasets where hard links
are justified and use jICA in this common subspace, and separate
ICAs in the distinct subspaces. Hence, one can easily choose the most
appropriate algorithm and order for each case. The approach builds
on PCA-CCA [8], which makes use of consecutive steps of PCA
and CCA to identify the order of common and distinct subspaces
with small sample support, important in multimodal fusion as the
associations in this case are in the sample dimension, N . Given the
orders, common and distinct subspaces are then split, and analyzed
independently using decomposition methods like ICA, where for the
common subspace jICA that assumes shared mixing matrix becomes
a very suitable candidate.

Given Xk , k = 1, 2, we perform CCA along the common dimension
N , given the common order C determined using PCA-CCA, first C
canonical coefficients are used to project the datasets into a space
where association between those datasets is maximized. Similarly, we
can use the N−C canonical coefficients to project and backreconstruct
two datasets between which the associations are minimum. We call
these subspaces Xk,D ∈ R

N−C×Vk distinct and the common subspaces
Xk,C ∈ R

C×Vk , for k = 1, 2.
In a second step, the common parts can be analyzed using jICA

as in [X1CX2C ] = A[S1CS2C ] and distinct parts can be analyzed
using separate ICAs. Using jICA only for the common part provides
a good match to the strong common mixing assumption of jICA
and yields sources that are strongly associated across the datasets.
Separate analyses on the distinct parts on the other hand, yields
sources that are distinct to each modality.

IV. RESULTS

A. Simulation Results

In the comparison, we include jICA, pICA, IVA, C-ICT, all four
methods discussed in Section III and DS using ICA, which we call
DS-ICA. Apart from pICA, which is developed for Infomax, entropy
bound minimization (EBM) [9] is used for the other methods as
it provides a much more flexible matching of the component pdf.
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Fig. 2. Performance comparison for component estimation

However to be fair to pICA, the components are generated from a
Laplacian distribution, for which Infomax provides a good match, and
for IVA, we use the version that assumes a Laplacian pdf and takes
all-order statistics into account [2]. We generate N = 10 sources each
with 1000 independent and identically distributed (i.i.d.) samples for
two datasets where C = 3 sources are correlated across the datasets
with correlation values 0.9, 0.7 and 0.5. Latent sources are linearly
mixed using mixing matrices Ak ∈ R

M×10, where M is the number
of subjects, and the datasets are reduced to 10, the true order, for all
methods. Three columns of the mixing matrices are used to simulate
the group difference through a step type response, i.e., a difference
in the mean value with additive standard Gaussian noise, one pair
as common and a single one distinct in the second dataset. We refer
to the components corresponding to these profiles as discriminative
components since they can be identified through a t-test.

We evaluate performance by changing first the number of subjects—
20 to 200 with a step height fixed to 1.5—and then the step-height
introduced for distinguishing the two groups in the range [0.2, 2]
resulting in correlation values [0.2, 0.8] while keeping the subject
count fixed at 50. Results are averaged over 100 runs and shown in
Fig. 2. For the first set of simulations, shown in Fig. 2(a) and Fig. 2(b),
performance of all methods improves as the number of subjects
increase, with C-ICT trailing behind as it allows limited interaction
among the datasets. Another approach that does not let datasets fully
interact, pICA also exhibits limited performance especially with small
number of subjects. DS-ICA makes most efficient use of the data as it
performs a joint ICA for the common order of three following a PCA-
CCA step to determine the order and provides the best performance.
In the second group shown in Fig. 2(c) and Fig. 2(d), as the profile
correlation increases with increasing step height, the link becomes
stronger and the performance of all algorithms in general improve.
Since in this scenario where the association through profiles keeps
increasing is a good match for multimodal data, C-ICT designed
for the multimodal case performs quite robustly except for very
low correlation values as in this case the CCA step might not
correctly identify the index of the correlated component, and IVA
fails for distinct component estimation primarily because the example
challenges one of the assumptions of the IVA model, that the mixing
matrices are all full rank as it estimates two separate mixing matrices.
DS-ICA provides again the best overall performance.
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B. Fusion of fMRI and EEG

We use EEG and fMRI data collected from 38 subjects—16 patients
with schizophrenia and 22 healthy controls—performing an auditory
odd ball task. The multivariate features used for the study are the task
related spatial maps for fMRI and the event related potentials (ERP)
calculated from each subject’s EEG data from the CZ (midline central
position) channel by averaging small window around the target tone
across repeated instances of the task. The resulting matrices are
XEEG ∈ R

38×45100 and XfMRI ∈ R
38×60186.

Performances are evaluated using jICA, pICA, C-ICT, and DS-ICA.
The IVA-based solution for multimodal data, tIVA, is excluded as
the sample size of 38 is extremely low for evaluation of higher-order
statistics. The ICA algorithm used for jICA, C-ICT and DS-ICA is
EBM [9] and for pICA, Infomax [10]. As both EBM and Infomax
are of iterative type, cross intersymbol interference [11] is used to
select the most consistent estimate, and the entropy rate based order
selection scheme [12] is used to determine the order of the signal
subspace, and an order N = 20 is selected for jICA and 12 for fMRI
and 20 for EEG data for the other methods. A two-sample t-test
is used to identify the profiles and corresponding components with
group difference (p < 0.05) and are shown in Fig. 3. The fMRI
components are thresholded at Z = 2 where color red, orange and
yellow indicates higher activation in healthy controls than patients
and color blue means decrease in controls than patients.

All four methods identify discriminating components, putative
biomarkers of disease, and have general agreements in terms of
areas indicated in fMRI and ERP characteristics. jICA and pICA
estimate one component from each modality, while C-ICT captures
two and DSF-jICA captures two fMRI and one EEG component. ERP
components estimated by all methods reports peaks around N2-P3
complex, correlating with other studies that indicated changes in motor
execution region associated with N2 as well as N2-P3 in patients with
schizophrenia [6]. The fMRI component estimated by jICA shows
higher activation in sensory motor and auditory region while the
fMRI component in pICA shows activation in part of sensory motor
area, which is similar to the first component estimated by C-ICT. First
fMRI component estimated by DS-ICA shows activation similar to the
second C-ICT component, in the auditory and sensory motor region
and second one has activation in part of visual and sensory motor
region. Overall, components estimated by DS-ICA have p values
lower than other methods, better able to differentiate between two
groups. In addition, the common and distinct subspace interpretation
allows additional information that can be useful depending on the
nature of the study.

V. DISCUSSION

We present a general umbrella for fusion methods that are based
on ICA and IVA, and introduce DS-ICA, which provides a desirable
balance in terms of different assumptions made by previous methods,
in particular providing a good match to those of joint ICA. Even
though here it is introduced for two datasets and using ICA as the
main decomposition method, DS formulation can be used with other
matrix decomposition methods, and extended to multiple datasets by
generalizing PCA-CCA for multiple datasets. An attractive approach
for this is using IVA with multivariate Gaussian model, which is
equivalent to multiset canonical correlation analysis [2]. A main
difficulty when selecting a given model in applications like fusion
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Fig. 3. Discriminating fMRI and ERP components identified using DS-
ICA, jICA, pICA, and C-ICT

of medical imaging data is due to the lack of ground truth. A recent
approach proposes the use of classification rate between patients
and controls as an objective measure of performance to compare
different models [13], however its utility might be limited with small
sample size as in the example we presented. Thus, another important
direction is development of methods for assessing performance of
different fusion methods to provide guidance to the practitioner.
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